Search results for "sulfate-reducing bacteria"
showing 10 items of 12 documents
Psychrotolerant Sulfate-reducing Bacteria from an Oxic Freshwater Sediment Description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis…
1998
The most abundant culturable sulfate-reducing bacteria were isolated from the littoral sediment of the oligotrophic Lake Stechlin. The strains STL1 and STL4 were obtained from the oxic uppermost layer, while strain STL6 was isolated from the anoxic zone in 20 to 30 mm depth. The isolates showed a striking morphological feature in tapering off at one end of the cell. Physiological characteristics related them to the genus Desulfovibrio. They contained desulfoviridin. H2, formate, pyruvate, lactate, and fumarate were utilized with sulfate, sulfite, thiosulfate, or elemental sulfur as electron acceptors. All isolates were able to reduce oxygen and survived 120 h of aeration. However, aerobic g…
Stabilisation of MSWI bottom ash with sulphide-rich anaerobic effluent.
2007
Effluent of an anaerobic sulphate-reducing wastewater treatment process was used to stabilise bottom ash. The effect of stabilisation on the concentration and binding of Ca, P, S, Cu, Pb, Zn, As, Cr, and Mo were studied by comparing results of sequential extraction from fresh and stabilised bottom ash. The stabilisation treatment improved the retention of Ca, Cu, Pb, S, and Zn in bottom ash compared to a treatment with ion-exchanged water. In addition to retention, Cu, S, and Zn were accumulated from the anaerobic effluent in the bottom ash. Concentrations of As, Cr, and Mo remained on the same level, whereas leaching of P increased compared to control treatment with ion-exchanged water. Im…
Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater
2012
The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH4 is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaer…
Modelling anaerobic biomass growth kinetics with a substrate threshold concentration.
2004
Abstract Many bacteria have been observed to stop growing below a certain substrate threshold concentration. In this study, a modification of the Monod kinetics expression has been proposed to take into account this substrate threshold concentration observed in bacterial growth. Besides the threshold concentration no additional parameters have been added to the kinetic expression and so, only the substrate threshold concentration and the half-saturation constant have to be estimated for model calibration purposes. Furthermore, for parameter estimation purposes, practical identifiability of this new function has been studied and the results have been satisfactory. The new model has been appl…
Methane-derived carbonate conduits from the late Aptian of Salinac (Marne Bleues, Vocontian Basin, France): Petrology and biosignatures
2015
Abstract Peculiar carbonate bodies occur in distinct marl layers of the Marnes Bleues Formation (Aptian–Albian, Vocontian Basin, Southern France). The carbonate conduits exhibit pipe- or sausage-like forms and a central channel. Their sizes range between 30 and 60 cm in length and 5–10 cm in diameter. The conduit carbonates consist of automicrite authigenically formed within the sediment. Millimeter-sized aggregates of framboidal pyrite are abundant within the conduit automicrites, probably representing former colonies of sulfate reducing bacteria. The central channel reflects former pathways of reduced fluids in the carbonate conduit. Ni-enrichments at the margins of the central cavity are…
Sulphate-reducing bacteria in paper machine waters and in suction roll perforations
1978
To define some aspects of the biological corrosion sulphate-reducing bacteria were studied in paper machine waters and in plugged perforations of a suction roll. The desulphuricants were most active on passive fiber recipients. Most bacteria found in fiber plugs taken from the perforations of suction rolls belonged to the genus Desulfovibrio. Desulphuricants were found mainly at the outer ends of plugged perforations, where corrosion of the roll metal is most evident.
Sulphate-Reducing Laboratory-Scale High-Rate Anaerobic Reactors for Treatment of Metal- and Sulphate-Containing Mine Wastewater
2002
Upflow anaerobic sludge blanket (UASB) reactors were used in this study to evaluate the feasibility of the sulphate-reducing, anaerobic high-rate process to treat metal- and sulphate-containing mining wastewater (MWW). Four simultaneous reactors, inoculated with different inocula (mesophilic granular sludge from two UASB reactors, one treating sugar refinery wastewater and the other board mill wastewater) and operated with different loadings, were for 95 days fed with synthetic feed consisting of glucose and sulphate. In all reactors, 23-72% of sulphate and 12-93% of COD were removed. Subsequently, two reactors were fed with diluted MWW (zinc as the main metal) for 77 days with hydraulic re…
Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-…
2014
Abstract Monomethylmercury as one of the most toxic mercury species influences the health and development of higher organisms and tends to accumulate in the tissue of animals and humans. The aim of this study was to explore the mercury methylating capability of (1) intestinal microbiota of the soil-living earthworm Eisenia foetida (E. foetida) and (2) intestinal sulfate reducing-bacteria in pure cultures. After exposing animals to inorganic mercury chloride (4 mg kg−1 Hg2+) in soil and sterile soil for ten days, the amount of methylmercury in tissue was measured. Despite sterilization of soil, the accumulation of the organic mercury species in tissue was 51 ng g−1. To elucidate the potentia…
Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste
2020
The risk of hydrogen sulfide (H2S) production can be a challenge in marine land-based recirculating aquaculture systems (RAS). Hydrogen sulfide is a toxic gas that can cause massive fish mortality even at low concentrations, and in addition, serious odour problems in the surroundings. It is a bacterial by-product originating from the degradation of organic matter in sulfur-rich waters such as marine waters. In order to hinder H2S production in marine land-based RAS, more information on the H2S production conditions and the associated microbiology is needed. In this study, the production of H2S from rainbow trout (Oncorhynchus mykiss) organic waste was examined using a novel H2S measurement …
Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology
2018
[EN] Anaerobic membrane bioreactors (AnMBRs) can achieve maximum energy recovery from urban wastewater (UWW) by converting influent COD into methane. The aim of this study was to assess the anaerobic biodegradability limits of urban wastewater with AnMBR technology by studying the possible degradation of the organic matter considered as non-biodegradable as observed in aerobic membrane bioreactors operated at very high sludge retention times. For this, the results obtained in an AnMBR pilot plant operated at very high SRT (140 days) treating sulfate-rich urban wastewater were compared with those previously obtained with the system operating at lower SRT (29 to 70 days). At 140 days SRT the …